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A periodically poled LiNbO3 optical parametric generator

in wavelength conversion from 2 to 3.88—4.34 µm
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A periodically poled lithium niobate (PPLN) optical parametric generator (OPG) pumped by a laser
diode (LD)-pumped Q-switched Tm,Ho:GdVO4 laser operated at 2.048 µm with pump pulse of 25 ns
and repetition rate of 10 kHz is reported. A continuous tunable middle-infrared (mid-IR) spectrum of
3.88 − 4.34 µm is obtained by changing the crystal temperature from 50 to 124◦C. When the incident
pump power is 3 W, the total OPG output power is 95 mW, corresponding to optical conversion efficiency
of 3.2%.

OCIS codes: 190.4970, 140.3600, 140.3070.

Tunable middle-infrared (mid-IR) coherent sources have
obtained a variety of applications, such as remote sens-
ing, spectroscopy, and laser radar. Optical parametric
generator (OPG) is an efficient way to obtain such a
laser source in mid-IR regions. In recent years, there has
been increasing interest in the use of a periodically poled
LiNbO3 (PPLN) with the largest nonlinear coefficient
and quasi-phase-matching (QPM) capability. Thus,
PPLN OPGs are important devices for achieving widely
tunable mid-IR optical sources. High efficient OPGs in
1-µm pumped PPLN have been demonstrated[1−3]. A
1-µm pumped OPG with 4-µm idler achieves quantum
efficiency of 27% as the result of the large quantum de-
fect. Compared with 4-µm idler of 1-µm pumped OPG,
the quantum efficiency of 2-µm pumped OPG with signal
is increased two times. Whereas, the presence of strong
idler absorption in 2-µm pumped OPG results in high
idler loss, while it reduces the effect of pump backconver-
sion on the signal and leads to higher signal efficiency.
Recently, improvement in commercially available 2-µm
Tm,Ho laser and development of bulk PPLN materi-
als have generated new possibilities for high efficient
operation of 2-µm pumped PPLN OPGs. Hansson et

al.
[4] reported an OPG pumped by a low-repetition rate

Tm,Ho:YLF laser at 2.051 µm with output optical range
from 3.4 to 5.2 µm.

In this paper, a 2.048-µm Tm,Ho:GdVO4laser pumped
OPG is achieved by using a laser-diode (LD) pumped
high-repetition-rate short-pulse Tm,Ho:GdVO4 laser
and a 5-cm-long PPLN. Hence a 3.88 − 4.34 µm high-
repetition-rate tunable mid-IR laser is realized.

Figure 1 shows a schematic of the experimental setup
for a high-repetition-rate PPLN OPG. A 2.048-µm
acousto-optically (AO) Q-switched diode-end-pumped
Tm,Ho:GdVO4 laser with TEM00 and a maximum av-
erage power of 7 W is built as a pump source. In the
experiments, to avoid possible damage in the PPLN
crystals, the average pump power is set at 3 W. The
repetition rate of the pump laser is adjusted in the range
of 10 − 100 kHz and set at 10 kHz. An approximate

25-ns full-width at half-maximum (FWHM) pulse with
an energy of 0.3 mJ and a peak power of approximately
12 kW are achieved. The pump light is focused to a
beam with a waist radius of 50 µm by using a 50-mm
focal-length lens. The focal point locates at the centre of
the PPLN crystal. A broadband filter (M1) with 3-µm
cutoff wavelength is used to block residual pump light.

The multi-grating PPLN crystal (from Crystal Tech-
nology Inc.), which is 50 mm in length, 10 mm in width,
and 1 mm in thickness with 10 grating periods from 28.2
to 31 µm in 0.2-µm increment, is used in the experiments.
The crystals are mounted in heating ovens to avoid the
photorefractive effect in the PPLN, which makes it pos-
sible to adjust the temperature of the crystals over a
range of 25 − 250 ◦C with a precision of ±0.1 ◦C.

The generated wavelengths are measured with a 300-
mm focal length WDM1-3 monochromator (0.8-nm nom-
inal resolution) and an InS detector. Temperature tuning
for the 2-µm pump is achieved at the grating period of
28.2 µm. The continuous tuning idler range of 4.1− 4.34
µm and signal range of 3.88 − 4.1 µm are obtained, re-
spectively, for the temperature range from 50 to 124 ◦C.
Figure 2 shows the theoretical results from the Sellmeier
equation by the black dots[5] and experimental results by
the solid line, respectively, which are in good agreement
with each other.

Figure 3 shows the measured characteristics of total
OPG output power with a 28.2-µm grating at the crystal

Fig. 1. Schematic diagram of a high-repetition-rate PPLN
OPG.
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Fig. 2. Signal and idler wavelengths versus temperature at
grating period of 28.2 µm.

Fig. 3. Total OPG output powers versus incident pump
power.

temperature of 50 ◦C. The OPG generates wavelengths
of 3.88 µm for signal and 4.34 µm for the idler. The max-
imum OPG output power of 95 mW is achieved at pump

power of 3 W, corresponding to total optical conversion
efficiency of 3.2%. Such efficiency is lower than optical
parametric oscillator (OPO)[6] due to the low gain in sin-
gle pass through crystal.

In summary, we have demonstrated a PPLN OPG
pumped by a 2-µm Tm,Ho:GdVO4 solid-state laser.
Using 5-cm-long PPLN with single-pass pumping
configuration, the maximum OPG output power up to
95 mW has been produced with the frequency of 10 kHz.
The maximum optical conversion efficiency reaches 3.2%
in the presence of absorption. By changing the temper-
ature of the crystal, a continuous tunable mid-IR spec-
trum of 3.88 − 4.34 µm is obtained. The PPLN OPG is
a useful and simple way to generate broadband mid-IR
radiations. The results are an initially discuss for the
realization of mid-IR in a 2-µm pumped PPLN OPG.
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